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Abstract—COVID-19 could affect the global and local 

economy mainly by directly affecting production, by creation of 

disruption in supply chains and markets, as well as through its 

financial impact on firms and markets and organizations. 

However, the extent to which the impact is felt depends a great 

deal on the how governments and the public react to the disease. 

Here, a model is proposed to investigate the effect of the spread of 

corona virus infection and the consequent measures taken in 

response to its spread to lessen its impacts on the society and the 

economy. The interaction between the number of infected 

individuals and the variations in the national Growth Product, 

GDP, is modeled by a system of impulsive non-linear difference 

equations with delays. We are specifically interested in how 

different lock down measures effect business recovery as reflected 

by the national GDP. The model is analyzed to obtain valuable 

insights as to the factors that could yield different successes in the 

pandemic control and business recovery in various scenarios. 

Based on data of newly infected cases and cumulative cases 

weekly in Thailand, the model is simulated in a variety of 

scenarios to illustrate how different strategies and lockdown 

measures may give rise to different recovery rates. 

 

Keywords— COVID-19, economic recovery, response 

measures, delayed impulsive system, difference equations, 

stability analysis.  

I. INTRODUCTION 
ccording to [1], COVID-19 could affect the global 
economy in mainly three ways. Firstly, it exerts direct 
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impacts on production, as witnessed by what has occurred in 
China. It has become clear that Chinese production has already 
been considerably affected by the shutdown in 
Hubei province and other areas of the country. Some other 
countries have also to feel, to different levels, a direct impact 
as their governments impose similar measures. 
The slowdown in China has substantial effects on exporters to 
China, the largest sources of imports of which are Japan, 
Korea, and other Asian countries including Thailand, 
according to the World Bank [1]. For this reason, even 
discounting any possibility of new outbreaks of the disease, 
these areas will have a high chance of experiencing slow 
growth in the first half of 2020, to say the least.    

Secondly, as Bachman stated in [1], many manufacturing 
firms not only depend on intermediate inputs that are imported 
from China and other countries overwhelmed by the disease, 
they also rely on sales of their products in China to meet their 
goals of financial growth. Thus, the slowdown in business 
activity, exacerbated by transportation restrictions, in affected 
countries will most probably have an impact 
on companies globally in terms of their production and 
profitability, not to mention in the aspects of manufacturing 
and raw materials used in manufacturing [1]. If companies rely 
heavily on intermediate goods from affected regions, they may 
not be immediately capable of easily switching from one 
source to the next. The extent to which the companies are 
affected depends on how quickly the outbreak declines and 
how stringent the measures imposed by the authorities to 
mitigate the crisis. More importantly, businesses connected to 
travel and tourism are unlikely to recover from the losses that 
they have been facing. 

Finally, it is also stated in [1] that the third channel through 
which the COVID-19 crisis could affect the global economy is 
by its financial impact on financial firms and markets. Lengthy 
disruptions of production will cause stress on some firms, 
specifically those with insufficient liquid assets. To correctly 
anticipate or understand which firms might be vulnerable, 
traders in financial markets face difficulties in not being able 
to correctly foresee future trends in these volatile times. The 
corresponding rise in risk will likely portend a significant 
decline in equity markets and corporate bond markets. 
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As the coronavirus continues its spread around the globe, 
governments have turned to proven public health measures, 
such as social distancing, and mask wearing, to physically 
disrupt the disease [2]. However, doing so has significantly cut 
off the flow of goods and people as mentioned above, slow 
economies, and is undoubtedly creating a global recession. 
According to Carlsson-Szlezak et al. [2], “economic contagion 
is now spreading as fast as the disease itself.”  

As the virus began to spread initially, politicians, policy 
makers, and investors, aware of the pattern outbreaks in 
history, wasted valuable time by not acting in a timely fashion 
during which time early, and thus more effective and less 
costly, window for social distancing closed [2]. Now, it has 
become clear that the economic costs have reached a much 
higher level, since the pandemic trajectory has progressed 
much further along, so that forecasting the outcome has turned 
out to be next to impossible, as there have arisen many more 
unprecedented dimensions of the crisis which are unforeseen 
[2]. In this uncharted territory, the role of mathematical models 
has without question gained importance and credibility in their 
forecasting power. 

As explained in [3], the majority of models can be classified 
into two categories, which are proposed in order to achieve 
different objectives: projections versus statistical forecasts. 
Projection models are deterministic and they predict what 
could happen given a set of underlying assumptions, while 
statistical forecasting models utilize observed data to predict 
what will happen in the future.  

In 1927, Kermack and McKendrick [4] developed the 
famous continuous predictive model of epidemic population 
dynamics, known as a “susceptible, infected, and removed” 
(SIR) model which divided a constant population into three 
compartments or states. The first state represents individuals 
susceptible to the infection denoting by S(t) the number of 
susceptible individuals on day t into the epidemic.  In the 
second state belongs the infected individuals on day t, denoted 
by I(t). Finally, R(t) denotes the number of individuals 
removed from the infectious disease dynamics through death 
or recovery with immunity on day t of the epidemic. 

It is assumed that susceptible individuals contract the 
infection by interacting with infected individuals. This 
interaction is modeled by a term which varies as the product of 
the susceptible and the infected, rS(t)R(t). Moreover, the 
mortality/recovery rate is modeled as a direct proportion of 
infected individuals. The key contribution of such projection 
models like that of Kermack‐ McKendrick’s is that they are 
based on logical assumptions of the underlying mechanism of 
a process so that they can be utilized to immediately address 
“what if” questions without having to rely on a great deal of 
supporting data [4]. 

More importantly, it is from SIR‐ like models that we can 
see the effects of social distancing on flattening the curve [3]. 
In addition, once the model parameters are fitted to 
experimental data, SIR models can predict when infections 
may peak or how high the peak may be, depending on the 
underlying model assumptions, as pointed out in Jewell et al. 
[5]. 

However, it is argued by many researchers in the statistical 
camp [3] that it is important that researchers use projection 
models for hypothetical scenario development and statistical 
forecasting models for forecasting, which are two different 
goals. 

The average number of secondary cases because of one 
infected person at the beginning of the epidemic is denoted by 
R0, and in order for the epidemic to decline R0 should be less 

than 1.   Within the SIR framework, 0R rNT , where T is 
the time to recover and N is the population size. In absence of 
interventions, the estimated R0 of COVID‐ 19 is between 1.5 
and 6.7 [6]. This value is not constant but changing with time. 
According to [7], R0 can be fit to a statistical model. Similarly 
to Massad et al. [8], Carlsson-Szlezak [3] fitted an exponential 
decay model to New York’s data yielding 0

0.5 0.02tR e  , 
though it is suggested that other statistical models such as one 
with an asymptote could be utilized. 

Here, we propose a model to investigate the effect of the 
spread of corona virus infection and the consequent measures 
taken in response to its spread to lessen its impacts on the 
society and the economy. We utilize the national Growth 
Product (GDP) per capita as the variable that best reflects the 
economic health of a country. The interaction between the 
number of infected individuals and the variations in the 
national GDP per capita is modeled by a system of non-linear 
difference equations with impulses at variable intervals. The 
model tracks the number of mobile healthy individuals in the 
population, the number of infected individuals, and the 
variations in GDP per capita. The instances of national 
impositions of lock down restrictions and relaxations at 
different levels and intensities are incorporated on the model 
dynamics by the addition of impulses at variable intervals and 
strengths. We also take into account the delays before infected 
individuals show symptoms, as well as the delays before 
business can recover after the lock down has been lifted. The 
recovered individuals return to the mobile population after a 
delay as well. Thus, the model is a system of delayed 
impulsive difference equations. We are specifically interested 
in how different lock down measures effect business recovery 
as reflected by the national GDP per capita. The model is 
analyzed to obtain valuable insights as to the factors that could 
yield different successes in the pandemic control and business 
recovery in various scenarios. Based on data of newly infected 
cases and cumulative cases weekly in Thailand, the model is 
simulated in a variety of scenarios to illustrate how different 
scenarios of strategies and lockdown measures may give rise to 
different recovery rates. 

II. MODEL SYSTEM 
In order to model the impact of coronavirus pandemic on 

the economy and subsequent recovery, we let hn be the 
number, in millions, of healthy mobile individuals at week n 
who are able to interact with others and carry out transactions 
within the community. We let bn denote the indicator of 
business health, taken here to be the national GDP per capita 
at week n, and let in denote the number of newly infected 
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individuals in the community at week n. 
Based on the principles of the fundamental SIR model, we 

then arrive at the following system, where 1,2,3,...k  , 
0,1,2,..., 1m T d   , and d is the delays before the stimuli 

from incoming visitors or workers on the business recovery is 
felt as reflected by the increase in GDP. 

1 1 1 , ,n n i n n nh h rh i ch n kT                (1) 
2

1 3( ) , (2 1) ,n n n n n n nb b h i Lb b h n k T m d            (2)  

1 1 1, (2 1) ,n n i n ni i rh i n k T m d                 (3) 

1

(1 ) , (2 1)
(1 ) , 2         

uk n

n

dk n

q h n k T
h

q h n kT


  
 

 
,          (4) 

1 (1 ) , (2 1) ,n nb b n k T m d               (5) 

1 , (2 1) .n ni i v n k T m d                 (6) 
Equation (1) gives the number of mobile healthy individuals 

at week n + 1 in terms of that at week n. The second term on 
the right of (1) is the rate of removal of healthy mobile 
individuals due to infection by the infected population in so 
that this term, as in the SIR model, is taken to be directly 
proportional to the product of hn-1 and in-1, ir being the removal 
rate constant of variation. We assume that an infected 
individual takes an average of 2 weeks before being detected, 
and hence the subscript n -1 on h and n in this term.  The third 
term here represents the changes in the population due to 
natural causes, taken to directly vary as the population level at 
time n with variation constant c, 0 1c  . 

Equation (2) gives the value of GDP per capita at time n + 1 
in terms of that at time n. The second term on the right of (2), 
with the proportional constant L, 0 < L < 1, is the rate of 
increase of GDP due to stimulation from interaction among 
mobile individuals, which includes the recovered individuals 
who take on the average 4 weeks to recover and hence the 
subscript n -3 here. The last 2 terms in (2) represent the rate of 
business loss which decreases at the rate 

n nb h  with the 
increase in the interaction between hn  and bn. 

Equation (3) gives the number of infected individuals at time 
n + 1 as a sum of that at time n and the number of newly 
infected individuals 1 1i n nrh i 

with the delay of 2 weeks. 
However, equation (1) applies only in the weeks where 

n kT because this is the duration where there is no 
impositions of lockdown measures or their relaxations. If 

(2 1)n k T  , equation (4) applies, at which instance the 
lockdown is lifted with ukq being the fraction of hn that are 
allowed to interact socially with others in the community. If 

2n kT on the other hand, equation (4) will also apply at 
which instance a lockdown is enforced with dkq being the 
fraction of hn that are kept from interacting socially with others 
in the community. Thus, T is the length of the periods of 
lockdown and lockdown relaxation. 

Equations (2) and (3) apply only when 
(2 1) ,n k T m d     1,2,3,...k  , 0,1,2,..., 1m T d   ,  

during which time no business stimulus from inbound travelers 

is felt. At the times n, (2 1) ,n k T m d    1,2,3,...k  , 
0,1,2,..., 1m T d   , the stimuli from inbound visitors or 

workers will kick in as reflected by the GDP that jumps up by 
a fraction of 

nb as in (5), and infectious population feels 
weekly jumps of size   from infected individuals from outside 
the country as in (6), after a delay of d weeks. 

The parameters in this model system (1) – (6) are varied to 
simulate different lockdown and relaxation measures in 
various scenarios in Section IV. We first carry out an analysis 
of the model in the next section. 

III. MODEL ANALYSIS 
Here, we carry out a stability analysis of (1) – (6) by first 

equating their right hand sides to zero to find 2 equilibrium 
solutions as follows. 

1) The trivial steady state solution:  
0 0 0 ( , , ) ( , , ) (0,0,0)h b i h b i  , 

a washout steady state at which all state variables vanish. 
Healthy as well as infected human become extinct, in which 
case no business can exist. 

2) The endemic equilibrium solution: 
2

2( , , ) ( , , ) (0, , )s s s

ii

c c
h b i h b i

rLr


  , 

at which point healthy population becomes extinct while 
infection is endemic.  
  We next consider each of the steady states individually by 
writing  

n

nh C , 
so that  

1 1
1

n

n nh C h  

   . 

A. The Washout Steady State  

We linearize the model system about the steady state 
0 0 0( , , ) (0,0,0)h b i  to derive the following The Jacobian 

matrix: 
1 0 0

(0,0,0) 0 1 0
0 0 1

c

J L

 
 

  
 
 

, 

whose characteristic equation is 
               (1 ) 1 1 0c L        ,    (7) 

yielding the eigenvalues  
1 2 31 , 1 , 1c L       . 

Since 0c  , 1 1   and therefore, the washout steady state is 
unstable. 

B. The Endemic Steady State  

Linearizing the model system (1) – (6) about the point 
2

( , , ) (0, , )s s s

i

c c
h b i

L r


 , we arrive at the following Jacobian 

matrix. 
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1

3 3

1

1 0 0
( , , ) 2 1 2

0 1

i s

s s s s s s

i s

r i c

J h b i i b L i

r i



    





 



  
 

   
 
 

. 

Thus, the characteristic equation is 
  1(1 ) 1 1 0i sr i c L          ,   (8) 

yielding the eigenvalues 
1 2 31, 1 ,L c      . 

Thus, 1,2,3 1.    
 
The eigenvectors corresponding to the above 3 eigenvalues 

are 

1 2 3

0
0 1

2
, 1 ,  and 

01

s

s

i
e e e m

L
l



 
    
              

     
 

, 

 
where 

  

 

22 1 2
,

( 1) 1
s s s

s

i b c c c i c
m l

c c L c

    
 

  
. 

Letting 
1 0 0

2
1

0 1

s

s

i
P m

L

l



 
 
 
 
 
 

 

and 
0 0

( ) 0 (1 ) 0
0 0 1

n

n

c

L n L

 
 

  
 
 

, 

then, the fundamental solution matrix of (1) – (3) is given by 
1 0 0

0 0
2

( ) ( ) 1 0 (1 ) 0
0 0 10 1

n

ns

s

c
i

n PL n m L
L

l




 
  
      
   

 

 

  

0 0
2

(1 )

0 1

n

n n s

s

n

c

i
m c L

L

lc



 
 
  
 
  
 

. 

We consider this in 2 separate cases. 
Case 1: the fraction of population put under lockdown equals 
that taken out of lockdown; 

uk dk kq q q   

Linearizing (4) – (6) at (2k - 1)T, we obtain the fundamental 
matrix 

1

1 0 0
0 1 0
0 0 1

kq

E

 
 

  
 
 

, 

which leads us to 
 

1 1

1 0 0
2

( ) ( ) (1 )

0 1

T

k

T T s

s

T

q c

i
T E T m c L

L

lc




 
 
    
 
  
 

. 

Since there is the delay of d, we first find the matrix of 
transition during the period of d as 

2

0 0
2

( ) (1 )

0 1

d

d d s

s

d

c

i
d m c L

L

lc



 
 
   
 
  
 

. 

Then, by linearizing (4) – (6) during the corresponding 
interval after the delay, we find the fundamental matrix  

 2

1 0 0
0 1 0
0 0 1

E 

 
 

  
 
 

, 

which leads us to 

   
 

3 2

0 0
2 1

( ) (1) 1 1 (1 )

0 1

s

s

c

i
T E m c L

L

lc

 
  

 
 

      
 
  
 

, 

for every week during the period of T - d weeks. Linearizing 
(4) – (6) at 2kT, we obtain 

4

1 0 0
( ) 0 1 0

0 0 1

kq

T

 
 

   
 
 

. 

Thus, the stability of the solution 
2

2( , , ) (0, , )s s s

ii

c c
h b i

rLr


   is 

determined by the eigenvalues of 

4 3 2 1
T d   

 

 

2 2

2

1 0 0

* (1 ) 1 *
* 0 1

T

k

T dT

c q

L 


 
 
   
 
 
 

, (9) 

where the entries shown in the above matrix as   are not 
relevant to our conclusions and hence need not be derived. 

We are thus able to prove the following theorem. 
 

Theorem 1: For the model system (1) – (6), the endemic 

steady state 
2

( , , ) (0, , )s s s

i

c c
h b i

L r


  will be 

stable, but not asymptotically stable, provided 
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21 1kq            (10) 

and  

                  
 

ln(1 )
ln(1 ) 2ln(1 )

d
T

L








  
        (11) 

hold. If either (10) or (11) is violated, then the steady state will 
be unstable. 
Proof 

Considering (9), the eigenvalues of 4 3 2 1
T d    are 

2 2
1 (1 ) T

kq c   , 

  2
2 1 (1 )T d TL 


   , and 

3 1  . 

Since (10) holds, 1 1  , Since (11) holds, we will have 

2 1  . Finally, 3 1  and therefore, the steady state is 
stable. 

On the other hand, if either (10) or (11) is violated, one of 
the eigenvalues has absolute value greater than 1 which means 
the steady state is unstable. 

 
Case 2: fraction of population put under lockdown different 
from that taken out of lockdown;

uk dkq q . 

In this case, if we write 
, 0uk dkq q    ,           (12)  

then we have the following result. 
 

Theorem 2: If (12) holds, and 

 
1 1

1 dk

dk

q
q

 


,          (13) 

then, the endemic steady state ( , , )s s sh b i is stable provided 

       
1 1

1 dk

dk

q
q

   


 .          (14) 

On the other hand, ( , , )s s sh b i will be unstable if  

 
1 > 1

1 dk

dk

q
q

  


.            (15) 

Proof 

The reference matrix in this case will be similar to that of Case 
1 given in (9) but with the entry in the first row and first 
column being  
      2

1 1 1 T

uk dkq q c     
instead. Thus, recalling the 0 < c <1, we have stability when 
this quantity is less than or equal to 1, and if this is greater than 
1, the steady state will be unstable. 

Now, if (14) holds, then by rearranging, we obtain 
    2

1 1 1 (1 ) 1 1T

uk dk dk dkq q c q q         . 
which ensures stability. Instability follows with the sign 
reversed which makes this eigenvalue bigger than 1. 
 We note that asymptotic stability cannot be assured because 

3 1  . 

IV. INCREMENTAL OPENING UP OF LOCKDOWN  
We now modify the system of equations (1) – (6) to model 

the case in which relaxation of a lockdown is carried out 
incrementally. In other words, the businesses are allowed out 
of lockdown in a stepwise fashion. The modified model is as 
follows. 

1 1 1 , , 1,2,3..., 1,n n i n n nh h rh i ch n kT m m T            (16)  
2

1 3( ) , (2 1) ,n n n n n n nb b h i Lb b h n k T m d            
0,1,2,..., 1m T d   ,(17) 

1 1 1, (2 1) ,n n i n ni i rh i n k T m d          
0,1,2,..., 1m T d   ,(18) 

1

(1 ) , (2 1) , 0,2,3..., 1,
(1 ) , 2                                           

uk n

n

dk n

q h n k T m m T
h

q h n kT


     
 

 
 , (19) 

1 (1 ) , (2 1) ,n nb b n k T m d       0,1,2,..., 1m T d   ,(20) 

1 , (2 1) ,n ni i v n k T m d       0,1,2,..., 1m T d   ,  (21) 
where 1,2,3,...k  . 
 Here, the index m allows hn to experience a jump every 
week during the period from (2k-1)T  to 2kT -1, and then the 
cycle starts again at 2kT . 

Noting that the system (16) – (21) has the same steady states 
as (1) – (6), we can prove the following result in a similar 
manner to the non-incremental strategy. 

Theorem 3: 
The endemic steady state ( , , )s s sh b i of the model system (16) – 
(21) is stable, but not asymptotically stable, provided  

mT T ,              (22) 
where 

 

   

1ln 1 ln(1 )min ,
ln 1 ln(1 ) 2ln(1 )

dk

m

uk

q d
T

q L





   
  

     

.    (23) 

It will be unstable if 
mT T  .               (24)  

Proof 
Similar to the proof of Theorem 2, linearization of (16) – (18) 
yields the fundamental matrix 

1

0 0
2

( ) (1 )

0 1

n

n n s

s

n

c

i
n m c L

L

lc



 
 
   
 
  
 

. 

For every week during the first d weeks of the period between 
(2k+1)T and 2kT, k = 1,2,3,…, the healthy mobile population 
takes an upward  jump of ukq  so that we have the matrix 

2

0 0
1 0 0

2
0 1 0 (1 )
0 0 1 0 1

T

uk

T s

s

T

c
q

i
m c L

L

lc



 
  

      
    

 

. 
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Then, during the remaining T d weeks, the matrix 
corresponding to business recovery together with human 
returns is 
 

 3

0 0
1 0 0

2
0 1 0 (1 )
0 0 1 0 1

T

uk

T s

s

T

c
q

i
m c L

L

lc




 
  

       
    

 

. 

Finally, during the lockdown period, we have 

4

0 0
1 0 0

2
0 1 0 (1 )
0 0 1 0 1

T

dk

T T s

s

T

c
q

i
m c L

L

lc



 
  

      
    

 

. 

The stability of the steady state of interest then depends on the 
sizes of the eigenvalues of 

4 3 2
T d d    

  

 

2

2

1 1 0 0

  = * 1 (1 ) *
* 0 1

T T

dk uk

T d T

q q c

L


  
 
  
 
 
 

,   

where the expressions of off diagonal entries shown as * are 
not relevant to our conclusion.  

If (22) holds, then 

 

1 1ln
ln 1 1uk dk

T
q q

 
  

  
.         (25)  

Rearranging (25), we see that the first eigenvalue  
     2

1 1 1 1 1 1T TT

dk uk dk ukq q c q q        ,  (26) 
since 0 1c  .  

We also have 
ln(1 )

ln(1 ) 2ln(1 )
d

T
L








  
,           (27) 

which makes, upon rearranging, 
  2

2 1 (1 ) 1T d TL 


    .           (28) 
Thus, if (22) holds, both (26) and (28) will be satisfied. On 

the other hand, if (24) holds, then one of the eigenvalues 
would be larger than 1 in size. Therefore, the steady state is 
stable if (22) holds and unstable if (24) does. It is not 
asymptotically stable since 3 1  . 

V. RESULTS AND DISCUSSION 

A. Parametric Values 

The values of the model parameters used in our simulations 
are given in Table 1. while the other parameters are left to be 
varied in order to illustrate different scenarios of infection 
control strategies adopted by the authority. 

The value of ri has been deduced from the data of officially 
reported newly infected cases each week during March 29 to 
April 29, 2020, in Thailand [9], so that model yields a forecast 
that is the closest to the actual reported reported case of 42 
new cases during the week from April 30, 2020 and May 6, 
2020, which is used as the initial week of our simulations. 
With these parameter values, the model then predicts the 
numbers of new cases for the next 2 weeks after the initial 
week to be 17.4 and 21.37 cases which are very close to the 
reported new cases of 17 and 21, respectively [9].  

According to [10], the current annual population growth rate 
is 0.25%. Thus, we deduce the growth rate c per week to be  

annual growth rate
number of weeks in a year

c   0.25
52

0.0048  per week. 

 
Table 1. Model Parameter Values and Units 

Parameter Value Unit 
ir  51.6444 10  wk-1per mil. 

c 0.0048 wk-1 
  20.033 10  wk-1per mil. 
L 0.00663 wk-1 
  0.00078 wk-1per mil. 
T 9 weeks 
v 0.00025 mil. 

 
 According to [11], Thailand’s GDP per capita was $7,792 in 
2019, 9% to 17.7% of which is due to tourism and related 
businesses [12]. The Bank of Thailand expects Thailand’s 
GDP to be reduced by 5.3% due to the COVID_19 crises [13]. 
Relying on these numbers, The variation constant in the term 
that represents business stimulation due to human interaction 
 has been estimated to be 

predicted GDP drop during lockdown
fraction mobile total population weeks lockdown

 
 

 

5.3%  0.033% per million 
0.25 69

pers
.8

on
9 wk

s pe
s

r week 
 

.

 The value of L in rate of business/opportunity loss at 
reduced mobile human is accordingly estimated as 

predicted GDP drop
number of weeks to acheive such drop in GDP

L    

    5.3%
8 weeks

 = 0.00663 per million persons, 

assuming that it takes around 8 weeks for businesses t fully 
recover the loss due to COVID-19 situation in Thailand. 
 k is the parameter of effect of mobile human contributing to 
increase in business growth rate: 

      1.923 per capita
52 wks 0.679 69.8 million

 
 

= 0.00078. 

Based from the report by data.worldbank.org that Thailand’s 
annual GDP per capita growth is 1.923%, and web.nso.go.th 
states that working population amounts to 67.9% of total 
population. Also, the initial value of GDP per capita used to 
start the simulation is then estimated as 
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0 (GDP before COVID)(1 tourism input)(1  GDP drop)b   

       $7,792(1 0.13)(1 0.053) $6,419.75    , 
taking the contribution from tourism to be 13%, on the 
average, which is lost due to travel limitations during the 
lockdown period. The simulation starting week, n = 0, 
corresponds to 3 weeks before lockdown was supposed to be 
first lifted in Thailand on April 29, 2020. 

The initial value of weekly infection cases i0 is taken to be 
42 new cases which was the reported cases at 3 weeks before 
the lockdown was first lifted in Thailand, namely the week 
from April 22, 2020 to April 29, 2020.  

Based on the daily reports of the Thai authorities on 
COVID-19 situation, in the month of April, the number of 
inbound travelers per week ranged from 1193 to 2661 [14]. In 
the past few months, there have been reports of 1 to 2 infected 
persons who were able to leave their quarantine centers and 
roamed free in the communities.  From such reports, we can 
thus take the weekly increment in infected cases v to be 
0.00025 million in our simulations. Imposition of stricter 
quarantine measures will of course reduce this number. 

The initial value of healthy mobile individuals h0 is  
0 (fraction of population mobile) (initial population)h    

        0(1 ) 69.8 million = 0.2 69.8 13.96 millionq     . 
Assuming that the lockdown has prevented interaction among 
the country’s population to the level that only 20% or 0.2 of 
the total population of 69.8 million [15] remains mobile in the 
community. 

We shall experiment with model simulations where the lock 
down is kept for 9 weeks, followed by a period of lockdown 
relaxation for 9 weeks. As realistically, businesses would need 
time before they can recover completely to their original 
capacities, we simulate the model with various delays d in 
business recovery.  

B. Some Examples  

To show that reasonable parameter values exist that satisfy 
the conditions given in the Theorems in the previous section 
that ensure stability or instability of the equilibrium solutions 
of the model system, we give a couple of examples in 
illustration. 

In the following examples, we let 
L= 0.01, 0.03  , T = 9, d = 3. 

Then, 
ln(1 ) 3ln1.03 9.164

ln(1 ) 2ln(1 ) ln1.03 2ln(1.01)
d

L






 

   
, 

and (11) holds. 
Example 1: Suppose the fraction of population being put under 
lockdown is 0.4dkq  , then 

 
1 101 1.4 0.27

1 6dk

dk

q
q

    


. 

Therefore, we may set  

 
10.27 1

1 dk

dk

q
q

    


,   

and the fraction of population allowed out of lockdown is then 

0.4 0.67ukq    , 
in which case the steady state ( , , )s s sh b i of (1) – (6) will be 
unstable since 

     1 1 1 1 1uk dk dk dkq q q q         

       
11 1 1 1

1dk dk dk

dk

q q q
q

 
       

 
, 

which is the desirable outcome in which the mobile population 
does not become extinct.  

On the other hand, if we set  

 
10.1 1

1 dk

dk

q
q

    


, 

and the fraction of population allowed out of lockdown is then 
0.4 0.5ukq    , 

in which case the steady state ( , , )s s sh b i of (1) – (6) will be 
stable, which is an undesirable scenario as the mobile healthy 
population eventually becomes extinct, while the infection 
becomes endemic. 

For the model system (16) – (21), we consider the following 
examples. 
Example 2: If L= 0.00663, 0.03  , 0.8, 0.2dk ukq q  ,T = 
9, d = 3, then 

ln(1 ) 3ln1.03 5.4751
ln(1 ) 2ln(1 ) ln1.0 1.006674253 2ln( )

d

L






 

   
  

and 

 

1 1ln
ln 1 1uk dkq q

 
 

  
 = 8.82747. 

Thus, we obtain 
 min 5.4751 5.4751 98.82747,mT T    . 

Hence, according to Theorem 2, ( , , )s s sh b i is unstable. 
Example 3: 

If  0.8, 0.15dk ukq q  , then 
ln(1 ) 3ln1.03 9.164

ln(1 ) 2ln(1 ) ln1.03 2ln(1.01)
d

L






 

   
 

and 

 

1 1ln 11.51
ln 1 1 ln(1.15

n
)

l 5

uk dkq q

 
  

  
. 

We thus obtain 
 min 11.51,9.164 9.164 9mT T    . 

Hence, according to Theorem 2, ( , , )s s sh b i is stable. 

C. Model Simulation 

Simulations of the model have been carried out specifically 
to try to answer some pressing and difficult questions that the 
authorities of many countries are facing and finding hard to 
answer in order to make the right decision concerning whether 
a lockdown should be imposed and how it is to be carried out. 
We therefore vary the model’s parameters to illustrate various 
scenarios in which different strategies are adopted with 
different outcomes. 

 In the following figures, we show graphs of the state 
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variables of interest as functions of the number n of weeks 
beyond the start of the simulation when n = 0, corresponding 
to 3 weeks before the first lockdown is lifted in Thailand. 

In Fig. 1, the system (1) – (6), which models abrupt opening 
of businesses, with 4.0ukq  , 0.8dkq  , is simulated with 
period of lockdown T = 9 weeks, the delay in business 
recovery d =3 weeks, portion of businesses connected to 
visitors and workers from abroad is   = 15% of the current 
GDP, but they are allowed in every 9 weeks. The number of 
new infected cases is incremented from the infected travelers 
from abroad by v = 42.5 10  millions each week during 
(2 1)  and (2 2) , 1,2,3,...k T d k T k    .  
 
 

 
a) 
 

 
b) 

Fig. 1 Simulation of system (1) – (6) for the case where 
lockdown is lifted in an abrupt manner and the delay 
d is 3 weeks: a) number of weekly new cases,            
b) GDP per capita. The simulation starts from the 
point where n = 7 on the graph. 

In Fig. 1, we show the data of infected cases and national 
GDP per capita 6 weeks before the simulation is started in 
order to allow the readers to compare the situations before the 
crises and after it actually showed signs of serious 
repercussions on the economy. We see in Fig. 1a) that the 
GDP level is not able to recover its original level 9 weeks after 
the lockdown has been lifted. Also, when the alarming rise in 
infected case, seen in Fig. 1a), forces the second lockdown 
after 9 weeks, the level of GDP per capita continues to drop, 
showing no sign of possible future recovery provided that this 
condition remains unchecked. This is because business 

recovery takes 3 weeks at least to take place if there were no 
assistance from the government to stimulate the economy in a 
big way.  

We therefore look at the scenario in which the government 
hands down a huge stimulating package to help the economy 
recover so that the time required for it to recover is shorter, by 
putting d =1. The model simulation in this scenario is seen in 
Fig. 2. where 4.0ukq  , 0.8dkq   and   = 15% as well. 

 
 

 
a) 

 

 
b) 
 

Fig. 2 Simulation of system (1) – (6) for the case where 
lockdown is lifted in an abrupt manner and the delay 
d is 1 week: a) number of weekly new cases, b) GDP 
per capita. The simulation starts from the point 
where n = 7 on the graph. 

We see in Fig. 2b) that in this case where firms and 
businesses can recover more quickly, the national GDP is able 
to recover its original value after 9 weeks after the lockdown 
has been lifted. This appears to be a satisfactory strategy that 
the government might follow. However, we observe in Fig. 2a) 
that the number of weekly new cases rises a much higher level 
which might overwhelm the public health system. This is most 
likely due to the abrupt lifting of the lockdown from which the 
population become mobile all at once, or no social distancing 
and mask wearing are not observed to a satisfactory extent. We 
therefore carried out a simulation of the model system (16) – 
(21), shown in Fig. 3, which simulates a scenario where the 

Number of new cases 

n 

n 

GDP per capita 

Number of new cases 

n 

GDP per capita 

n 
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lockdown is lifted in an incremental fashion. This may be 
thought of as stricter observation of masks usage and social 
distancing even when the lockdown is lifted. The simulation 
result in this scenario is shown in Fig. 3 where healthy mobile 
population is incremented by 0.198ukq  repeated from 

(2 1)n k T   to (2 1)k T , k = 1,2,3,…, in a gradual fashion. 
 
 

 
a) 

 
b) 

Fig. 3 Simulation of system (16) – (21) for the case where 
lockdown is lifted in an incremental manner and the 
delay d is 1 week: a) number of weekly new cases,   
b) GDP per capita. The simulation starts from the 
point where n = 7 on the graph. 

 
We observe in Fig. 3 that the number of new cases each 

week is now lower which could be more manageable. 
However, as expected, the economic recover becomes less 
satisfactory. This is due to the fact that mobile individuals 
become active in the interaction with each other in a gradual 
fashion. Social distancing may be keeping them apart or not 
get involved in certain risky transactions. Businesses then do 
not recover fast enough. 

Experimenting with shorter lockdown periods does not yield 
much better recovery. Based on these model simulations, 
therefore, we suggest a strategy that involves an incremental 
relaxation, but with a bigger jump at the week right after the 
lockdown ends, followed by smaller increments in a 
reasonable and realistic manner.  Fig. 4 shows the simulation 

in this case with the following incremental rule instead of that 
in (19): 

1

1 2

(1 ) ,  if (2 1)                                  
(1 ) ,  if (2 1) , 1,2,3..., 1
(1 ) ,  if 2                                           

uk n

n uk n

dk n

q h n k T

h q h n k T m m T

q h n kT



  


      
  

.(29) 

 
 

 
 

a) 
 

 
 

b) 
Fig. 4 Simulation of system (16) – (21), with (19) replaced 

by (28), for the case where lockdown is lifted in an 
incremental manner and the delay d is 1 week:         a) 
number of weekly new cases, b) GDP per capita. The 
simulation starts from the point where n = 7 on the 
graph. The second lockdown lasts only 7 weeks. 

In Fig. 4, 1 1.0ukq  and 0.124ukq  . We see that, if we adopt 
this rule in (29), as well as a shorter lockdown, the economy 
recovery is very promising, as seen in Fig. 4b), while number 
of new cases does not peak at a very high level. In fact, the 
peak here is more or less the same as in Fig. 3a), and it might 
be still manageable with respect to the health care capacity. If 
we take the business recovery to be an important factor in 
decision making, this option appears to be a good strategy to 
follow. In terms of infected cases, the difference between 
strategy shown in Fig. 3 and that seen in Fig. 4 would be in the 
cummulative number of infected cases, seen in Fig. 5. 
 
 

Number of new cases 

n 

GDP per capita 

n 

Number of new cases 

n 

GDP per capita 

n 

Cumulative number of cases 
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a) 
 

 

 
b) 

Fig. 5 Simulated weekly cumulative cases corresponding to  a) 
strategy seen in Fig. 3, b) strategy seen in Fig. 4.  

 
We see in Fig. 5, which compares the strategies simulated in 

Fig. 3 and Fig. 4, the cumulative number of infected 
individuals resulting from the strategy proposed for Fig. 4 is 
higher than that for Fig. 4. This is because the population 
comes out of lockdown as a large increment in hn on the first 
week and greater numbers of new cases are recorded which 
increases the cumulative number earlier on. Also, the 
lockdown does not last very long in Fig. 4, only 7 instead of 9 
weeks which leads to a higher cumulative number. 

A further simulation carried out on (16) – (21) illustrates the 
outcome when the lockdown is carried out in a gradual 
fashion. Since the infection rate, seen in Fig. 6a), is not down 
to a low enough level, the lockdown process has to be kept 
longer before the number of new cases is in the single digits. 
This then hurts the economy more as seen in Figure 6b), where 

0.172dkq   every week for 12 weeks.  
 
 

 
a) 

 

 
b) 

 

 
c) 

Fig. 6 Simulation of a modified model in the case that the 
lockdown is gradual, stretching 12 weeks as described 
in the text: a) number of new cases, b) GDP per capita, 
and c) cumulative number of cases. 

 
Even though 2.8ukq   first week into the uplift of lockdown 

followed by 0.124 as before on later weeks as in Fig. 5, it does 
not help the recovery second time around that much. The 
cumulative number seen in Fig. 6c) does not appear higher 
than those in Fig. 5 at the end of the simulation, but this is 
because the second opening up of lockdown is not through yet 
at n = 37. The cumulative number will continue to rise to a 
level higher than the other 2 scenarios before lockdown has to 
be imposed again after 9 weeks. 

Cumulative number of cases 

n 

n 

GDP per capita 

Number of new cases 

Cumulative number of cases 

n 

n 

n 
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VI. CONCLUSION 
We have proposed and analyzed models that describe the 

interaction between COVID-19 infection in a community and 
the health of its economy.  The models allow us to investigate 
the effect of the spread of corona virus infection and the 
consequent measures taken in response to its spread to lessen 
its impacts on the society and the economy. Impulses in 
healthy mobile population and the national GDP level due to 
the lockdown impositions and relaxations are incorporated.  
Moreover, there are 2 delays in our models. We assume that an 
infected individual takes an average of 2 weeks before being 
detected. The role of recovered individuals is also taken to 
account in the rate of increase of GDP with a delay of 4 weeks 
on the average before the recovered individuals may return to 
the mobile population. Thus, our models become an impulsive 
system of difference equations with multiple delays.   

To highlight the conclusions reached by the application of 
our models, it is clearly illustrated that sharp lockdowns and 
sharp opening up of lockdowns would yield more favorable 
outcomes, both in terms of economic recovery and control of 
the infection rate. A gradual lockdown brings the infection rate 
down more slowly. Also, the lockdown has to be kept longer 
before the infection rate gets satisfactorily low, which means 
the economy is hurt for a longer period since it cannot open up 
for business. Thus, it is deemed more prudent to impose a 
sharp lockdown to quickly bring down the number of cases so 
that the lockdown can be relaxed sooner. On the other hand, it 
has been shown by our model simulations that, while a gradual 
relaxing of lockdown can be a good measure to curb the rise of 
infection rate, it is detrimental to the recovery of the economy. 
A combination of sharp and incremental relaxations is 
recommended to simultaneously control the infection rate and 
stimulate quick economic recovery. 

Thus, the models provide us with a qualitative projection of 
the outcomes of different strategies in lifting the lockdowns or 
mandating them, which can be very valuable for the decision 
makers in trying to navigate the difficult task of balancing 
between keeping the infection rate low and pushing for 
economic recovery. In making such decisions, qualitative 
projections are extremely important since they answer the 
questions of “what if”, also explaining the causes and effects 
of the outcomes, better than a model that fits a set of data 
closely but does not describe the dynamic relationships 
between different important factors at play in the phenomena 
of interest, the understanding of which is crucial if we were to 
know what would entail if a factor is changed, and why, 
including which factors should be adjusted in our strategies in 
order to affect the desirable outcome. 
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